DEPARTMENT OF MATHEMATICS

B.A. / B.Sc.III (Practical) Examination 2010-2011
 Subject: MATHEMATICS (New Syllabus)
 Paper : III
 QUESTION BANK

Time : $\mathbf{3}$ hours
Marks : 50
UNIT-I (LINEAR ALGEBRA-I)

1) Let V be the set of all pairs (x, y) of real numbers and let F be the field of real numbers.

Define: $(x, y)+\left(x_{1}, y_{1}\right)=\left(x+x_{1}, 0\right) \& c(x, y)=(c x, 0)$. Is V with these operations a vector space over the field of real numbers?
2) Is the set of all polynomials in x of degree ≤ 2 a vector space ? Justify.
3) Let R be the field of real numbers. Which of the following are subspaces of $V_{3}(R)$
(i) $\{(x, 2 y, 3 z): x, y, z \in R\}$
(ii) $\{(x, x, x): x \in R\}$
(iii) $\{(x, y, z): x, y, z$ are rational numbers $\}$
4) Which of the following sets of vectors $\alpha=\left(a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}\right)$ in R^{n} are subspaces of $R^{n}(\mathrm{n} \geq 3)$?
(i) all α such that $a_{1} \leq 0$
(ii) all α such that a_{3} is an integer
(iii) all α such that $a_{1}+a_{2}+a_{3}+\ldots .+a_{n}=k(\mathrm{k}$ is a given constant $)$.
5) Let $\mathrm{V}=R^{3}$ and W be the set of all ordered triads ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) such that $x-3 y+4 z=0$

Prove that W is a subspace of R^{3}.
6) In the vector space R^{4} determine whether or not the vector (3,9,-4,2) is a linear combination of the vectors $(1,-2,0,3),(2,3,0,-1)$ and $(2,-1,2,1)$.
7) Determine whether the vector $(3,-1,0,-1)$ in the subspace of R^{4} spanned by the vectors
$(2,-1,3,2),(-1,1,1,-3)$ and (1,1,9,-5).
8) Find whether the following sets are linearly dependent or independent:
a) $\{(1,1,-1),(2,-3,5),(-2,1,4)\}$ of R^{3}
b) $\left\{\left[\begin{array}{cc}1 & -2 \\ -1 & 4\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 2 & -4\end{array}\right]\right\}$ of $M_{2 x 2}(\mathrm{R})$
9) Determine whether the following vectors form basis of the given vector spaces
a) $(2,1,0),(1,1,0),(4,2,0)$ of R^{3}
b) $x^{2}+3 x-2,2 x^{2}+5 x-3,-x^{2}-4 x+4$ of $P_{2}(R)$
10) a) Show that the vectors $(2,1,4),(1,-1,2),(3,1,-2)$ form the basis of R^{3}
b) Determine whether or not the vectors : $(1,1,2),(1,2,5),(5,3,4)$ form a basis of R^{3}.
11) Let $\mathrm{V}=R^{3}$ and W be the subspace of R^{3} given by $w=\{(x, y, z): x-3 y+4 z=0\}$. Prove that Wis a subspace of R^{3} and find its dimension.
12) Let F be the field of complex numbers and let T be function from F^{3} into F^{3} defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, 2 x_{1}+x_{2}-x_{3},-x_{1}-2 x_{2}\right)$. Verify that T is linear transformation and describe the null space of T.
13) Show that the mapping $T: R^{2} \rightarrow R^{3}$ defined as $T(a, b)=(a-b, b-a,-a)$ is a linear transformation from R^{2} into R^{3}.Find the Range ,Rank,Nullspace and Nullity of T.
14) Let F be a subfield of complex numbers and let T be the function from F^{3} into F^{3} defined by $T(a, b, c)=(a-b+2 c, 2 a+b,-a-2 b+2 c)$ show that T is a linear transformation find also the Rank and Nullity of T.
15) Let $T: R^{3} \longrightarrow R^{3}$ be the linear transformation defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+2 \mathrm{y}-\mathrm{z}, \mathrm{y}+\mathrm{z}, \mathrm{x}+\mathrm{y}-2 \mathrm{z})$

Find a basis and dimension of (i) the Range of T (ii) the Nullspace of T
16) Describe explicitly the linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(2,3)=(4,5)$ and $T(1,0)=(0,0)$.
17) Let T_{1} and T_{2} be two linear operators defined on $V_{3}(\mathrm{R})$ by $T_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{a}+\mathrm{b}, 2 \mathrm{~b}, 2 \mathrm{~b}-\mathrm{a})$ $T_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(3 \mathrm{a}, \mathrm{a}-\mathrm{b}, 2 \mathrm{a}+\mathrm{b}+\mathrm{c})$ for all $(\mathrm{a}, \mathrm{b}, \mathrm{c}) \in V_{3}(\mathrm{R})$ show that $T_{1} T_{2} \neq T_{2} T_{1}$
18) Show that the operator T on R^{3} defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{z}, \mathrm{x}-\mathrm{z}, \mathrm{y})$ is invertible and find similar rule defining T^{-1}.
19) Let T be the linear operator on R^{3} defined by
$\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2+} 4 x_{3}\right)$ What is the matrix of T in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ where $\alpha_{1}=(1,0,1) \alpha_{2}=(-1,2,1)$ and $\alpha_{3}=(2,1,1)$?
20) Find the matrices of the linear transformation T on $V_{3}(R)$ defined as $\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(2 \mathrm{~b}+\mathrm{c}, \mathrm{a}-4 \mathrm{~b}, 3 \mathrm{a})$ With respect to the standard ordered basis $\boldsymbol{B}=\{(1,0,0),(0,1,0),(0,0,1)\}$, and ordered basis $\boldsymbol{B}^{\prime} .=\{(1,1,1),(1,1,0),(1,0,0)\}$

UNIT-II(LINEAR ALGEBRA-II)
21) Find all (complex) proper values and proper vectors of the following matrices
a) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & i\end{array}\right]$
22) Let T be the linear operator on R^{3} which is represented in the standard ordered basis by the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$. Prove that T is diagonalizable.
23) a) Determine whether the matrix $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ similar over the field R to a diagonal matrix?

Is A similar over the field C to a diagonal matrix?
b) Prove that the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is not diagonalizable over the field C.
24) Show that the characteristic equation of the complex matrix $A=\left[\begin{array}{lll}0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a\end{array}\right]$ is $x^{3}-a x^{2}-b x-c=0$.
25) Find all the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]$
26) Find eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & -2 \\ 3 & -6 & -4\end{array}\right]$
27) Show that the distinct eigenvectors of a matrix A corresponding to distinct eigen values of A are linearly independent.
28) If α, β are vectors in an inner product space $V(F)$ and $\mathrm{a}, \mathrm{b} \in \mathrm{F}$, then prove that:
i) $\|a \alpha+b \beta\|^{2}=|a|^{2}\|\alpha\|^{2}+a \bar{b}(\alpha, \beta)+\bar{a} b(\beta, \alpha)+|b|^{2}\|\beta\|^{2}$
ii) $\operatorname{Re}(\alpha, \beta)=\frac{1}{4}\|\alpha+\beta\|^{2}-\frac{1}{4}\|\alpha-\beta\|^{2}$.
29) Prove that if α, β are vectors in an unitary space then
(i) $4(\alpha, \beta)=\|\alpha+\beta\|^{2}-\|\alpha-\beta\|^{2}+i\|\alpha+i \beta\|^{2}-i\|\alpha-i \beta\|^{2}$.
(ii) $(\alpha, \beta)=\operatorname{Re}(\alpha, \beta)+i \operatorname{Re}(\alpha, i \beta)$
30) If in an inner product space $\|\alpha+\beta\|=\|\alpha\|+\|\beta\|$, then prove that the vectors α, β are linearly dependent. Give an example to show that the converse of this statement is false.
31) If $\alpha=\left(a_{1}, a_{2} a_{3}, \ldots ., a_{n}\right), \beta=\left(b_{1} b_{2} b_{3}, \ldots \ldots . . b_{n}\right) \in V_{n}(R)$ then prove that: $(\alpha, \beta)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots \ldots .+a_{n} b_{n}$. defines an inner product on $V_{n}(R)$.
32) If $\alpha=\left(a_{1}, a_{2}\right), \beta=\left(b_{1}, b_{2}\right) \in V_{2}(R)$. Define: $(\alpha, \beta)=a_{1} b_{1}-a_{2} b_{1}-a_{1} b_{2}+4 a_{2} b_{2}$ Show that all the postulates of an inner product hold good.
33) Let $\mathrm{V}(\mathrm{C})$ be the vector space of all continuous complex-valued functions on the unit interval, $0 \leq t \leq 1$. If $\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t}) \in \mathrm{V}$, let us define $:(f(t), g(t))=\int_{0}^{1} f(t) \overline{g(t)} d t$. Show that all the postulates of an inner product hold good.
34) Determine whether the following define an inner product in $V_{2}(R)$:

$$
(\alpha, \beta)=2 x_{1} y_{1}+5 x_{2} y_{2} \text { given by } \alpha=\left(x_{1}, x_{2}\right), \beta=\left(y_{1}, y_{2}\right)
$$

35) Apply Gram-Schmidt process to the vectors $\beta_{1}=(1,0,1), \beta_{2}=(1,0,-1) \beta_{3}=(0,3,4)$ To obtain an orthonormal basis for $V_{3}(R)$ with the standard inner product.
36) Prove that the vectors α and β in a real inner product space are orthogonal if and only if $\|\alpha+\beta\|^{2}=\|\alpha\|^{2}+\|\beta\|^{2}$.
37) Prove that two vectors α and β in a complex inner product space are orthogonal if and only If $\|a \alpha+b \beta\|^{2}=\|a \alpha\|^{2}+\|b \beta\|^{2}$ for all pairs of scalars a and b.
38) a) Find a vector of unit length which is orthogonal to the vector $\alpha=(2,-1,6)$ of $V_{3}(R)$ with respect to the standard inner product.
b) Find two mutually orthogonal vectors each of which is orthogonal to the vector: $\alpha=(4,2,3)$ of $V_{3}(R)$ with respect to the standard inner product.
39) Let V be a finite-dimensional inner product space and let $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}\right\}$ be an orthonormal basis for V . Show that for any vectors α, β in $\left.\mathrm{V},(\alpha, \beta)=\sum_{k=1}^{n}\left(\alpha, \alpha_{k}\right) \overline{\left(\beta, \alpha_{k}\right.}\right)$.
40) Given the basis $(2,0,1),(3,-1,5)$ and $(0,4,2)$ for $V_{3}(R)$, construct from it by the Gram-Schmidt process an orthonormal basis relative to the standard inner product.

UNIT-III (MULTIPLE INTEGRALS)

41)Evaluate the following integral: $\iint x y\left(x^{2}+y^{2}\right) d x d y$ over $[(0, a ; 0, b)]$
42) Evaluate the following integral: $\iint \frac{x-y}{x+y} d x d y$ over $[0,1 ; 0,1]$.
43) Show that $\int_{0}^{1}\left\{\int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d y\right\} d x=\int_{0}^{1}\left\{\int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x\right\} d y$.
44) Evaluate $\iint x^{2} y^{2} d x d y$ over the domain $\left\{(x, y): x \geq 0, y \geq 0,\left(x^{2}+y^{2}\right) \leq 1\right\}$.
45) Evaluate the following integral: $\iint\left(x^{2}+y^{2}\right) d x d y$ over the domain bounded by

$$
x y=1, y=0, y=x, x=2 .
$$

46) Evaluate the following integral: $\iint \frac{x^{2}}{y^{2}} d x d y$ over the domain bounded by

$$
x y=1, y=x, x=2 .
$$

47) Show that $\int_{0}^{1}\left\{\int_{0}^{1} f(x, y) d x\right\} d y \neq \int_{0}^{1}\left\{\int_{0}^{1} f(x, y) d y\right\} d x$. Where $f(x, y)=\frac{y^{2}-x^{2}}{\left(y^{2}+x^{2}\right)^{2}}$.
48)) Evaluate $\int_{2}^{4} \int_{\frac{4}{x}}^{\frac{20-4 x}{8-x}}(4-y) d y d x$ and also change the order of integration.
48) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ over the domain bounded by $y=x^{2}$ and $y^{2}=x$.
49) Prove that $\int_{0}^{1} d x \int_{x}^{\frac{1}{x}} \frac{y d y}{(1+x y)^{2}\left(1+y^{2}\right)}=\frac{\pi-1}{4}$.
50) Evaluate $\iint(x+y+a) d x d y$ taken over $\left\{(x, y):\left(x^{2}+y^{2}\right) \leq a^{2}\right\}$
51) Evaluate $\iint_{R} \sqrt{4 x^{2}-y^{2}} d x d y$ where the domain R is the triangle bounded by the lines

$$
y=0, y=x, x=1 .
$$

53) Verify that $\iint_{R}\left(x^{2}+y^{2}\right) d y d x=\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where the domain R is the triangle bounded by the lines $y=0, y=x, x=1$.
54) Evaluate $\iint_{R} f(x, y) d x d y$ where $f(x, y)=x^{2}+y^{2}$ and $R=\left\{(x, y): y=x^{2}, x=2, y=1\right\}$.
55) Evaluate $\iint_{R} x y(x+y) d x d y \mathrm{R}$ is the region between $y=x^{2}, y=x$.
56) Prove that $\int_{0}^{1} d x \int_{0}^{1} \frac{(x-y) d y}{(x+y)^{3}}=\frac{1}{2} \quad$ and $\quad \int_{0}^{1} d y \int_{0}^{1} \frac{(x-y) d x}{(x+y)^{3}}=\frac{-1}{2}$.
57) Evaluate $\iint_{R} x\left(e^{x^{2}-y^{2}}\right) d x d y$ where R is closed region bounded by the lines $y=x, y=x-1$, $y=0, y=1$.
58) Evaluate $\iint_{R} y d x d y$ over part of the plane bounded by the lines $y=x$ and the parabola $y=4 x-x^{2}$.
59)Change the order of integration and evaluate $\int_{0}^{a} \int_{\frac{x}{a}}^{\sqrt{\frac{x}{a}}}\left(x^{2}+y^{2}\right) d y d x$.
60)Evaluate by changing order of integration $\int_{0}^{a} \int_{0}^{\sqrt{x^{2}-y^{2}}}(x y) d x d y$.

UNIT-IV (VECTOR CALCULUS)

61) a) If $A=5 t^{2} i+t j-t^{3} k$ and $B=\sin t i-\cos t j$ then find $\frac{d}{d t}(A \times B)$
b)If $A=x^{2} y z i-2 x z^{3} j+x z^{2} k$ and $B=2 z i+y j-x^{2} k \quad$ Find $\frac{\partial^{2}}{\partial x \partial y}(A \times B)$ at $(1,0,-2)$
62) If $\vec{r}=x i+y j+z k$ and $\mathrm{r}=|\vec{r}|$ then find : a) ∇r^{n} b) $\operatorname{div}(\operatorname{grad} \mathrm{r})$
63) If $A=2 y z i-x^{2} y j+x z^{2} k$ and $\varphi=2 x^{2} y z^{3}$ find: (i) $(A \times \nabla) \varphi$ (ii) $A \times \nabla \varphi$. Are they equal?
64) a) For $\varphi=2 x^{3} y^{2} z^{4}$ find $\operatorname{div}(\operatorname{grad} \varphi)$
b) If $A=x^{2} y i-2 x z j+2 y z k$,Find curl(curl A)
65) a)Define Solenoidal vector. Show that $A=\left(2 x^{2}+8 x y^{2} z\right) i+\left(3 x^{3} y-3 x y\right) j-$ $\left(4 y^{2} z^{2}+2 x^{3} z\right) k$ is not a Solenoidal, but $B=x y z^{2} A$ is Solenoidal.
b) Define irrotational vectors. If $V=(x+2 y+a z) i+(b x-3 y-z) j+(4 x+c y+2 z) k$
is irrotational then find $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
66) a) If $\vec{r}=x i+y j+z k$ and $\mathrm{r}=|\vec{r}|$ then prove that $\frac{\vec{r}}{r^{2}}$ is irrotational
b) If A and B are irrotational, then prove that $(A \times B)$ Solenoidal
67) If $U=3 x^{2} y, V=x z^{2}-2 y$ evaluate a) $\operatorname{grad}[\operatorname{grad} \mathrm{U} . \operatorname{grad} \mathrm{V}]$ b) curl [grad $\left.\mathrm{U} \times \operatorname{grad} \mathrm{V}\right]$.
68) Prove that : a) $\nabla^{2} f(r)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}$.
b) Find $f(r)$ such that $\nabla^{2} f(r)=0$ where $\mathrm{r}=|\vec{r}| \& \vec{r}=x i+y j+z k$.
69) The acceleration of a particle at any time $t \geq 0$ is given by :
$\mathrm{a}=\frac{d v}{d t}=12 \cos 2 t i-\sin 2 t j+16 t k$. If the velocity V and displacement r are zero at $\mathrm{t}=0$, find v and r at any time.
70) a) Find the total work done in moving a particle in a force field given by $\mathrm{F}=3 \mathrm{xyi}-5 \mathrm{zj}+10 \mathrm{xk}$ along the curve $\mathrm{x}=t^{2}+1, \mathrm{y}=2 t^{2}, \mathrm{z}=t^{3}$ from $\mathrm{t}=1$ to $\mathrm{t}=2$.
b) Find the work done in moving a particle one moving around a circle C in the XY-plane , if the circle has center at origin and radius 3 and if the force field is given by :
$F=(2 x-y+z) i+\left(x+y-z^{2}\right) j+(3 x-2 y+4 z) k$.
71) Find $\int_{c} \vec{F} . d \vec{r}$ For $\vec{F}=\left(2 x y+z^{3}\right) i+x^{2} j+3 x z^{2} k$ where C is the line joining $(1,-2,1)$ to $(3,1,4)$.
72) Evaluate \iint_{S} A.n $d s$, where $A=18 z i-12 \mathrm{j}+3 \mathrm{yk}$ and S is that part of the plane $2 \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=12$ which is located in first octant.
73) If $\vec{F}=\left(2 x^{2}-3 z\right) i-2 x y j-4 x k$ evaluate : a) $\iiint_{V} \nabla$. Fdv and b) $\iiint_{V} \nabla \times \vec{F} d v$, where V is a closed bounded by the plane $\mathrm{x}=0=\mathrm{y}=\mathrm{z}$ and $2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=4$.
74) Evaluate $\iint A . n d s$ for $A=y i+2 x j-z k$ and S is the surface of the plane $2 \mathrm{x}+\mathrm{y}=6$ in the first octant cut off by the plane $\mathrm{z}=4$.
75) Verify Green's theorem in a plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where c is the closed curve of the region bounded by : $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=x^{2}$.
76) Verify Gauss divergence theorem for $\vec{F}=4 x z i-y^{2} j+y z k$ and S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1 ; \mathrm{y}=0, \mathrm{y}=1 ; \mathrm{z}=0, \mathrm{z}=1$.
77) Verify Green's theorem in a plane for $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the boundary of the region defined by $y=\sqrt{x}, y=x^{2}$.
78) Verify Green's theorem in a plane for $\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
79) Verify Stoke's theorem $A=(2 x-y) i-y z^{2} j-y^{2} z k$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is it's boundary.
80) Verify divergence theorem for $A=2 x^{2} y i-y^{2} j+4 x z^{2} k$ taken over the region in the first octant bounded by $y^{2}+z^{2}=9$ and $x=2$.
