DEPARTMENT OF MATHEMATICS

B.A. / B.Sc.III (Practical) Examination 2010-2011

Subject: MATHEMATICS (New Syllabus)

Paper : III

QUESTION BANK

Time : 3 hours

Marks : 50

UNIT-I (LINEAR ALGEBRA-I)

1) Let V be the set of all pairs (x,y) of real numbers and let F be the field of real numbers.

Define: $(x, y) + (x_1, y_1) = (x + x_1, 0) \& c(x, y) = (cx, 0)$. Is V with these operations a vector space over the field of real numbers?

- 2) Is the set of all polynomials in x of degree ≤ 2 a vector space ? Justify.
- 3) Let R be the field of real numbers. Which of the following are subspaces of $V_3(R)$
 - (i){ $(x, 2y, 3z): x, y, z \in R$ }
 - (ii) $\{(x, x, x): x \in R\}$
 - (iii)){(x, y, z): x, y, z are rational numbers}
- 4) Which of the following sets of vectors $\alpha = (a_1, a_2, a_3, \dots, a_n)$ in \mathbb{R}^n are subspaces of
 - $R^n (n \ge 3)$?
 - (i) all α such that $a_1 \leq 0$
 - (ii) all α such that a_3 is an integer
 - (iii) all α such that $a_1 + a_2 + a_3 + \dots + a_n = k$ (k is a given constant).
- 5) Let V= R^3 and W be the set of all ordered triads (x,y,z) such that x 3y + 4z = 0Prove that W is a subspace of R^3 .
- 6) In the vector space R^4 determine whether or not the vector (3,9,-4,2) is a linear combination of the vectors (1,-2,0,3),(2,3,0,-1) and (2,-1,2,1).
- 7) Determine whether the vector (3,-1,0,-1) in the subspace of R^4 spanned by the vectors

(2,-1,3,2), (-1,1,1,-3) and (1,1,9,-5).

8) Find whether the following sets are linearly dependent or independent:

a) {(1,1,-1), (2,-3,5), (-2,1,4)} of
$$R^3$$

b) { $\begin{bmatrix} 1 & -2 \\ -1 & 4 \end{bmatrix}$, $\begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$ } of $M_{2x2}(R)$

9) Determine whether the following vectors form basis of the given vector spaces

a)
$$(2,1,0)$$
, $(1,1,0)$, $(4,2,0)$ of \mathbb{R}^3

- b) $x^2 + 3x 2$, $2x^2 + 5x 3$, $-x^2 4x + 4$ of $P_2(R)$
- 10) a) Show that the vectors (2,1,4), (1,-1,2), (3,1,-2) form the basis of R^3
 - b) Determine whether or not the vectors : (1,1,2), (1,2,5), (5,3,4) form a basis of \mathbb{R}^3 .

11) Let $V=R^3$ and W be the subspace of R^3 given by $w = \{(x, y, z): x - 3y + 4z = 0\}$. Prove that Wis a subspace of R^3 and find its dimension.

- 12) Let F be the field of complex numbers and let T be function from F^3 into F^3 defined by
 - $T(x_1, x_2, x_3) = (x_1 x_2 + 2x_3, 2x_1 + x_2 x_3, -x_1 2x_2)$. Verify that T is linear

transformation and describe the null space of T.

- 13) Show that the mapping $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined as T(a,b)=(a-b, b-a, -a) is a linear transformation from \mathbb{R}^2 *into* \mathbb{R}^3 . Find the Range ,Rank,Nullspace and Nullity of T.
- 14) Let F be a subfield of complex numbers and let T be the function from F³ into F³ defined by T(a,b,c)= (a-b+2c, 2a+b, -a-2b+2c) show that T is a linear transformation find also the Rank and Nullity of T.
- 15) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation defined by T(x,y,z)=(x+2y-z, y+z, x+y-2z)Find a basis and dimension of (i) the Range of T (ii) the Nullspace of T
- 16) Describe explicitly the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(2,3)=(4,5) and T(1,0)=(0,0).
- 17) Let T_1 and T_2 be two linear operators defined on $V_3(R)$ by $T_1(a,b,c)=(a+b, 2b, 2b-a)$ $T_2(a,b,c)=(3a, a-b, 2a+b+c)$ for all $(a,b,c) \in V_3(R)$ show that $T_1 T_2 \neq T_2 T_1$

- 18) Show that the operator T on R^3 defined by T(x,y,z)=(x+z, x-z, y) is invertible and find similar rule defining T^{-1} .
- 19) Let T be the linear operator on R^3 defined by

T(x_1, x_2, x_3) = (3 $x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_{2+}4x_3$) What is the matrix of T in the ordered basis { $\alpha_1, \alpha_2, \alpha_3$ } where α_1 =(1,0,1) α_2 =(-1,2,1) and α_3 =(2,1,1)?

20) Find the matrices of the linear transformation T on $V_3(R)$ defined as

T(a,b,c)=(2b+c, a-4b, 3a) With respect to the standard ordered basis

 $\mathbf{B} = \{(1,0,0), (0,1,0), (0,0,1)\}, \text{ and ordered basis } \mathbf{B}' = \{(1,1,1), (1,1,0), (1,0,0)\}$

UNIT-II(LINEAR ALGEBRA-II)

- 21) Find all (complex) proper values and proper vectors of the following matrices
 - $\mathbf{a})\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \mathbf{b})\begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix}$
- 22) Let T be the linear operator on R^3 which is represented in the standard ordered basis by the

matrix $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$. Prove that T is diagonalizable.

23) a) Determine whether the matrix $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ similar over the field R to a diagonal matrix?

- Is A similar over the field C to a diagonal matrix?
- b) Prove that the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable over the field C.

24) Show that the characteristic equation of the complex matrix $A = \begin{bmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{bmatrix}$ is

$$x^3 - ax^2 - bx - c = 0.$$

25) Find all the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$

26) Find eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & -2 \\ 3 & -6 & -4 \end{bmatrix}$

- 27) Show that the distinct eigenvectors of a matrix *A* corresponding to distinct eigen values of *A* are linearly independent.
- 28) If α , β are vectors in an inner product space V(F) and $a, b \in F$, then prove that:

i)
$$\|a\alpha + b\beta\|^2 = |a|^2 \|\alpha\|^2 + a\overline{b}(\alpha, \beta) + \overline{a}b(\beta, \alpha) + |b|^2 \|\beta\|^2$$

ii) $Re(\alpha, \beta) = \frac{1}{4} \|\alpha + \beta\|^2 - \frac{1}{4} \|\alpha - \beta\|^2$.

29) Prove that if α , β are vectors in an unitary space then

(i)
$$4(\alpha, \beta) = \|\alpha + \beta\|^2 - \|\alpha - \beta\|^2 + i\|\alpha + i\beta\|^2 - i\|\alpha - i\beta\|^2$$

(ii)
$$(\alpha, \beta) = Re(\alpha, \beta) + iRe(\alpha, i\beta)$$

- 30) If in an inner product space $\|\alpha + \beta\| = \|\alpha\| + \|\beta\|$, then prove that the vectors α, β are linearly dependent. Give an example to show that the converse of this statement is false.
- 31) If $\alpha = (a_1, a_2, a_3, ..., a_n)$, $\beta = (b_1, b_2, b_3, ..., b_n) \in V_n(R)$ then prove that :

$$(\alpha, \beta) = a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_nb_n$$
. defines an inner product on $V_n(R)$.

- 32) If $\alpha = (a_1, a_2), \beta = (b_1, b_2) \in V_2(R)$. Define : $(\alpha, \beta) = a_1b_1 a_2b_1 a_1b_2 + 4a_2b_2$ Show that all the postulates of an inner product hold good.
- 33) Let V(C)be the vector space of all continuous complex-valued functions on the unit interval,

 $0 \le t \le 1$. If $f(t), g(t) \in V$, let us define $:(f(t), g(t)) = \int_0^1 f(t) \overline{g(t)} dt$. Show that all the postulates of an inner product hold good.

34) Determine whether the following define an inner product in $V_2(R)$:

$$(\alpha, \beta) = 2x_1y_1 + 5x_2y_2$$
 given by $\alpha = (x_1, x_2), \beta = (y_1, y_2)$

35) Apply Gram-Schmidt process to the vectors $\beta_1 = (1,0,1), \beta_2 = (1,0,-1), \beta_3 = (0,3,4)$

To obtain an orthonormal basis for $V_3(R)$ with the standard inner product.

- 36) Prove that the vectors α and β in a real inner product space are orthogonal if and only if $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$.
- 37) Prove that two vectors α and β in a complex inner product space are orthogonal if and only If $||\alpha\alpha + b\beta||^2 = ||\alpha\alpha||^2 + ||b\beta||^2$ for all pairs of scalars a and b.

- 38) a) Find a vector of unit length which is orthogonal to the vector $\alpha = (2,-1,6)$ of $V_3(R)$ with respect to the standard inner product.
 - b) Find two mutually orthogonal vectors each of which is orthogonal to the vector: $\alpha = (4,2,3)$ of $V_3(R)$ with respect to the standard inner product.
- 39) Let V be a finite-dimensional inner product space and let { $\alpha_1, \alpha_2, \dots, \alpha_n$ } be an orthonormal basis for V. Show that for any vectors α, β in V, $(\alpha, \beta) = \sum_{k=1}^n (\alpha, \alpha_k) \overline{(\beta, \alpha_k)}$.
- 40) Given the basis (2,0,1),(3,-1,5) and (0,4,2) for $V_3(R)$, construct from it by the Gram-Schmidt process an orthonormal basis relative to the standard inner product.

UNIT-III (MULTIPLE INTEGRALS)

41)Evaluate the following integral: $\iint xy(x^2 + y^2)dxdy$ over [(0, a; 0, b)]

- 42) Evaluate the following integral: $\iint \frac{x-y}{x+y} dx dy$ over [0,1; 0,1].
- 43) Show that $\int_0^1 \{\int_0^1 \frac{x^2 y^2}{x^2 + y^2} dy\} dx = \int_0^1 \{\int_0^1 \frac{x^2 y^2}{x^2 + y^2} dx\} dy.$
- 44) Evaluate $\iint x^2 y^2 dx dy$ over the domain $\{(x, y): x \ge 0, y \ge 0, (x^2 + y^2) \le 1\}$.
- 45) Evaluate the following integral: $\iint (x^2 + y^2) dx dy$ over the domain bounded by

$$xy = 1, y = 0, y = x, x = 2.$$

46) Evaluate the following integral: $\iint \frac{x^2}{y^2} dx dy$ over the domain bounded by

$$xy = 1, y = x, x = 2.$$

47) Show that
$$\int_0^1 \{\int_0^1 f(x, y) dx\} dy \neq \int_0^1 \{\int_0^1 f(x, y) dy\} dx$$
. Where $f(x, y) = \frac{y^2 - x^2}{(y^2 + x^2)^2}$

- 48) Evaluate $\int_{2}^{4} \int_{\frac{4}{x}}^{\frac{20-4x}{8-x}} (4-y) dy dx$ and also change the order of integration.
- 49) Evaluate $\iint_R (x^2 + y^2) dx dy$ over the domain bounded by $y = x^2$ and $y^2 = x$.
- 50) Prove that $\int_0^1 dx \int_x^{\frac{1}{x}} \frac{y dy}{(1+xy)^2(1+y^2)} = \frac{\pi 1}{4}.$
- 51) Evaluate $\iint (x + y + a) dx dy$ taken over $\{(x, y): (x^2 + y^2) \le a^2\}$
- 52) Evaluate $\iint_R \sqrt{4x^2 y^2} dx dy$ where the domain R is the triangle bounded by the lines

y = 0, y = x, x = 1.

- 53) Verify that $\iint_R (x^2 + y^2) dy dx = \iint_R (x^2 + y^2) dx dy$ where the domain R is the triangle bounded by the lines y = 0, y = x, x = 1.
- 54) Evaluate $\iint_R f(x, y) dx dy$ where $f(x, y) = x^2 + y^2$ and $R = \{(x, y) : y = x^2, x = 2, y = 1\}$.

55) Evaluate $\iint_R xy(x+y)dxdy$ R is the region between $y = x^2$, y = x.

- 56) Prove that $\int_0^1 dx \int_0^1 \frac{(x-y)dy}{(x+y)^3} = \frac{1}{2}$ and $\int_0^1 dy \int_0^1 \frac{(x-y)dx}{(x+y)^3} = \frac{-1}{2}$.
- 57) Evaluate $\iint_R x(e^{x^2-y^2})dxdy$ where R is closed region bounded by the lines y = x, y = x 1, y = 0, y = 1.
- 58) Evaluate $\iint_R y dx dy$ over part of the plane bounded by the lines y = x and the parabola $y = 4x x^2$.

59)Change the order of integration and evaluate $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dy dx$.

60)Evaluate by changing order of integration $\int_0^a \int_0^{\sqrt{x^2-y^2}} (xy) dx dy$.

UNIT-IV (VECTOR CALCULUS)

61) a) If $A = 5t^2i + tj - t^3k$ and B = sint i - cost j then find $\frac{d}{dt}(A \times B)$

b) If
$$A = x^2 yzi - 2xz^3 j + xz^2 k$$
 and $B = 2zi + yj - x^2 k$ Find $\frac{\partial^2}{\partial x \partial y} (A \times B)$ at (1,0,-2)

62) If $\vec{r} = xi + yj + zk$ and $r = |\vec{r}|$ then find : a) ∇r^n b) div(grad r)

63) If
$$A = 2yzi - x^2yj + xz^2k$$
 and $\varphi = 2x^2yz^3$ find: (i) $(A \times \nabla) \varphi$ (ii) $A \times \nabla \varphi$.

Are they equal?

64) a) For $\varphi = 2x^3y^2z^4$ find div(grad φ)

b) If $A = x^2yi - 2xzj + 2yzk$, Find curl(curl A)

65) a)Define Solenoidal vector . Show that $A = (2x^2 + 8xy^2z)i + (3x^3y - 3xy)j - (3x^2y - 3xy)j - (3x^2y$

 $(4y^2z^2 + 2x^3z)k$ is not a Solenoidal, but $B = xyz^2A$ is Solenoidal.

b) Define irrotational vectors. If V = (x+2y+az)i+(bx-3y-z)j+(4x+cy+2z)k

is irrotational then find a,b,c.

66) a) If $\vec{r} = xi + yj + zk$ and $r = |\vec{r}|$ then prove that $\frac{\vec{r}}{r^2}$ is irrotational

b) If A and B are irrotational, then prove that $(A \times B)$ Solenoidal

67) If $U = 3x^2y$, $V = xz^2 - 2y$ evaluate a) grad [grad U.grad V] b) curl [grad U × grad V].

68) Prove that : a) $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$.

b) Find f(r) such that $\nabla^2 f(r) = 0$ where $r = |\vec{r}| \& \vec{r} = xi + yj + zk$.

69) The acceleration of a particle at any time $t \ge 0$ is given by :

 $a = \frac{dv}{dt} = 12 \cos 2ti - \sin 2tj + 16tk$. If the velocity V and displacement r are zero at

t=0, find v and r at any time.

- 70) a) Find the total work done in moving a particle in a force field given by F= 3xyi-5zj+10xkalong the curve $x=t^2 + 1$, $y=2t^2$, $z=t^3$ from t=1 to t=2.
 - b) Find the work done in moving a particle one moving around a circle C in the XY-plane, if the circle has center at origin and radius 3 and if the force field is given by :

$$F = (2x - y + z)i + (x + y - z^{2})j + (3x - 2y + 4z)k.$$

71) Find $\int_c \vec{F} \cdot d\vec{r}$ For $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$ where C is the line joining (1,-2,1) to (3,1,4).

- 72) Evaluate $\iint_S A.n \, ds$, where A=18zi-12j+3yk and S is that part of the plane 2x+3y+6z=12 which is located in first octant.
- 73) If $\vec{F} = (2x^2 3z)i 2xyj 4xk$ evaluate : a) $\iiint_V \nabla$. Fdv and b) $\iiint_V \nabla \times \vec{F} dv$, where V is a closed bounded by the plane x=0=y=z and 2x+2y+z=4.
- 74) Evaluate $\iint A \cdot n \, ds \, for \, A = yi + 2xj zk$ and S is the surface of the plane 2x+y=6 in the first octant cut off by the plane z=4.
- 75) Verify Green's theorem in a plane for $\oint_C (xy + y^2)dx + x^2dy$ where *c* is the closed curve of the region bounded by :y=x and y=x².

- 76) Verify Gauss divergence theorem for $\vec{F} = 4xzi y^2j$ +yzk and S is the surface of the cube bounded by x=0,x=1;y=0,y=1;z=0,z=1.
- 77) Verify Green's theorem in a plane for $\oint_c (3x^2 8y^2)dx + (4y 6xy)dy$ where *c* is the boundary of the region defined by $y = \sqrt{x}$, $y = x^2$.
- 78) Verify Green's theorem in a plane for $\oint_c (x^2 2xy)dx + (x^2y + 3)dy$ around the boundary of the region defined by $y^2 = 8x$ and x = 2.
- 79) Verify Stoke's theorem $A = (2x y)i yz^2j y^2zk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is it's boundary.
- 80) Verify divergence theorem for $A = 2x^2yi y^2j + 4xz^2k$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and x = 2.