Model Question Paper (Theory) B.A/B.Sc. III Year Examination, March/April 2011 MATHEMATICS PAPER IV(a) NUMERICAL ANALYSIS

Time: 3Hrs

Maximum Marks: 100

NOTE: Answer 6 questions from Section –A and 4 questions from Section –B choosing at least one from each unit. Each question in Section –A carries 6 marks and each question in Section-B carries 16 marks.

SECTION-A (6×6=36)

Unit I

- 1) Define Absolute, Relative and Percentage errors. Find the relative and percentage error in $u = 6v^5 3v^4$ at $v = 1.5 \pm 0.0025$.
- 2) Using Newton-Raphson method find root of the equation $x^3 5x + 3 = 0$ Correct to three decimal places.

Unit II

3) Find the missing term in the following table:

x	0	1	2	3	4
у	1	3	9	-	81

4) Determine the values of Δy_{-1} , $\Delta^3 y_{-2}$, $\Delta^5 y_{-3}$ in terms of y_0 by using definition of forward difference.

Unit III

- 5) Derive normal equations for fitting a straight line y = a + bx.
- 6) Find the value of $\int_{3}^{7} x^{2} log x dx$ by taking 8 strips using Boole's rule.

Unit IV

- 7) Explain ill conditioned and well-conditioned linear systems.
- 8) Derive Taylors series solution of $\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$

SECTION-B (4×16=64)

Unit I

- 9) a) Define multiplicity of a root of f(x) = 0.Explain Newtons generalized formula for approximation of a multiple root with multiplicity p for f(x) = 0.
 b) Find the smallest root of the equation y(x) = x³ 6x² + 11x 6 = 0 by Ramanujan's method.
- 10) a) Explain the method of false position with its geometric significance.
 - b) Find the root of the equation $y(x) = x^3 2x 5 = 0$ which lies between 2 & 3 by Muller's method.

Unit II

- 11) a) Derive Newton's forward interpolation formula.
 - b) From the following table , find the value of $e^{1.17}$ using Gauss forward formula:

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e ^x	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

12) a) Derive Langrange's interpolation and estimate error in Langrange's interpolation formula.

b) If $f(x) = \frac{1}{x^2}$ find the divided differences in [a,b] and [a,b,c].

Unit III

13) a) Determine the constants a and b by the least squares method such that $y = ae^{bx}$, fits the following data:

x	1.0	1.2	1.4	1.6
у	40.170	73.196	133.372	243.02

b) From the following table of values of x and y find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ when x = 6.

x	0	1	2	3	4	5	6
у	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

- 14) a) Derive Simpson's $\frac{3^{th}}{8}$ rule and find error in it.
 - b) Using Trapezoidal rule find the value of $\int_0^{\frac{\pi}{2}} \sqrt{\cos\theta} \, d\theta$ by dividing integral into 6 parts.

Unit IV

- 15) a) Explain the method of solving system of equations by Gauss –Siedal iterative method.
 - b) Solve the equations by the method of Factorization:

2x + 3y + z = 9, x + 2y + 3z = 6, 3x + y + 2z = 8.

- 16) a) Describe Euler's modified method of solving $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$.
 - b) Solve by Runge-Kutta method of fourth order, $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 with h = 0.1 and obtain y(0.2).