

MSc GENETICS COURSE STRUCTURE CHOICE – BASED CREDIT SYSTEM DEPARTMENT OF GENETICS, OSMANIA UNIVERSITY (Proposed for academic year 2016 onwards)

SEMESTER – I

SI.	Syllabus Ref. No	Papers	Credits	Teaching	Marks			
No.				Hours/ week	Internal Assessment	Semester Exam	Total	
1.	G101T	Principles of Inheritance	4	4	20	80	100	
2.	G102T	Cell Biology & Cytogenetics	4	4	20	80	100	
3.	G103T	Fundamentals of Biochemistry	4	4	20	80	100	
4.	G104T	Biostatistics and Population	4	4	20	80	100	
		Genetics						
			PRACT	TICALS		· · · · ·		
1.	G151P	Principles of Inheritance	2	4		50	50	
2.	G152P	Cell Biology & Cytogenetics	2	4		50	50	
3.	G153P	Fundamentals of Biochemistry	2	4		50	50	
4.	G154P	Biostatistics and Population	2	4		50	50	
		Genetics						
		Total	24	32			600	

SEMESTER – II

C1	Syllabus Ref. No	Papers		Teaching	Marks			
SI. No			Credits	Hours/ week	Internal Assessment	Semester Exam	Total	
1.	G201T	Genome organization and maintenance	4	4	20	80	100	
2.	G202T	Gene expression and regulation	4	4	20	80	100	
3.	G203T	Plant Genetics & Molecular Breeding	4	4	20	80	100	
4.	G204T	Human Genetics	4	4	20	80	100	
			PRACT	TICALS				
1.	G251P	Genome organization and maintenance	2	4		50	50	
2.	G252P	Gene expression and regulation	2	4		50	50	
3.	G253P	Plant Genetics & Molecular Breeding	2	4		50	50	
4.	G254P	Human Genetics	2	4		50	50	
		Total	24	32			600	
		•	·			· · ·	1	

MSc Genetics I year-CBCS syllabus

				Teaching	Marks		
S N	Syllabus Ref. No	Papers	Credits	hours/ week	Internal assessment	Semester exam	Total
1.	G301T	Genetic Engineering	4	4	20	80	100
2.	G302T	Immunogenetics	4	4	20	80	100
3.	G303T	 ELECTIVE 1: A. Human Genomics & Medical Genetics (or) B. Animal Genetics & Mouse Models 	4	4	20	80	100
4.	G304T	 ELECTIVE 2: A. Plant Genomics & Biotechnology (or) B. Plant Nutraceuticals & Nutrigenomics 	4	4	20	80	100
		PRACT	TICALS				•
1.	G351P	Genetic Engineering	2	4		50	50
2.	G352P	Immunogenetics	2	4		50	50
3.	G353P	A. Human Genomics & Medical Genetics (or)B. Animal Genetics & Mouse Models	2	4		50	50
4.	G354P	 A. Plant Genomics & Biotechnology (or) B. Plant Nutraceuticals & Nutrigenomics 	2	4		50	50
		Total	24	32			600

SEMESTER - III

SEMESTER - IV

S	Syllabus Ref. No	Papers	Credits	Teaching	Marks		
N				hours/ week	Internal assessment	Semester exam	Total
1.	G401T	Bioinformatics	4	4	20	80	100
2.	G402T	Applied Microbial Genetics	4	4	20	80	100
3.	G403T	 ELECTIVE 3: A. Cell & Tissue Engineering (or) B. Genetic Toxicology 	4	4	20	80	100
4.	G404T	Project Work	4	4	20	80	100
		PR	ACTICAI	LS			
1.	G451P	Bioinformatics	2	4		50	50
2.	G452P	Applied Microbial Genetics	2	4		50	50
3.	G453P	 A. Cell & Tissue Engineering (or) B. Genetic Toxicology 	2	4		50	50
4.	G454P	Project Thesis Presentation	2	4		50	50
		Total	24	32			600
		GRAND TOTAL	96	128			2400

MSc GENETICS I YEAR SEMESTER – I THEORY PAPER-I G101T- PRINCIPLES OF INHERITANCE

Unit 1: Eukaryote Model Systems for Genetic Analysis

- 1.1 Life cycle and importance of Drosophila
- 1.2 Life cycle and importance of Neurospora
- 1.3 Life cycle and importance of Yeast
- 1.4 Life cycle and importance of C. elegans
- 1.5 Life cycle and importance of Zebra fish
- 1.6 Life cycle and importance of Arabidopsis
- 1.7 Life cycle and importance of Maize

Unit 2: Mendelian Analysis of Inheritance and Extension to Mendel's Laws

- 2.1 Mendel's Laws of Inheritance
- 2.2 Allelic interactions; co-dominance and incomplete dominance; overdominance; pleiotropism; lethals and sub-lethals; penetrance and expressivity
- 2.3 Position effect Variegation
- 2.4 Epistasis: Non-allelic interactions and modification of Mendelian ratios
- 2.5 Multiple alleles-ABO blood groups in humans, Rh blood group incompatibility; self sterility alleles in plants; complex loci in *Drosophila*
- 2.6 Inborn errors of metabolism, one gene one enzyme concept
- 2.7 Inheritance of polygenic traits with specific examples

Unit 3: Linkage and Gene Mapping in Eukaryotes

- 3.1 Chromosomal basis of inheritance and Cytological basis of crossing over- Sterns experiments in *Drosophila*, Creighton and Mc Clintock experiment in maize
- 3.2 Inheritance of linked genes Coupling and Repulsion phase, meiotic recombination, gene mapping in *Drosophila* and maize using two point and three point test crosses with an emphasis on interference and coefficient of coincidence
- 3.3 Evidence for crossing over occurring at four strand stage Tetrad analysis and gene mapping in *Neurospora;* gene mapping using unordered tetrads in yeast
- 3.4 Mitotic crossing over A. niger

Unit 4: Sex determination and Extra-nuclear inheritance

- 4.1 Genetic basis of sex determination in Drosophila and S.alba
- 4.2 Dosage compensation; Sex -linked, sex-limited and sex-influenced characters
- 4.3 Extra-nuclear inheritance: Maternal effects; mitochondria and chloroplasts inheritance
- 4.4 Male Sterility in plants and their applications

PRACTICALS

G151P: PRINCIPLES OF INHERITANCE

- 1. Life cycle of Drosophila, maintenance of stocks
- 2. Problems based on Mendelian Laws maize cobs and Drosophila genetics stocks
- 3. Segregation analysis in Drosophila and maize
- 4. Mitotis in Onion root tips/ Mouse
- 5. Meiosis in Maize/ Grasshopper Testes
- 6. Problems on linkage & sex linkage

- 1. An Introduction to Genetic Analysis, 7th edition Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart. New York: W. H. Freeman; 2000. ISBN-10: 0-7167-3520-2
- 2. Genetics: A Conceptual Approach by Benjamin A Pierce (W.H. Freeman & Co. Ltd 2014 ISBN-13: 9781464109461
- 3. Introduction to Genetics: A Molecular Approach T A Brown Edition:1st Garland Science Taylor & Francis Group ISBN: 9780815365099
- Concepts of Genetics by William S. Klug, Michael R. Cummings, Charlotte A. Spencer 2005 Benjamin-Cummings Publishing Company ISBN 0131918338 (ISBN13: 9780131918337)
- 5. Genetic Analysis: An Integrated Approach by Mark Frederick Sanders, John L. Bowman 2014 2nd edition ISBN: 0321948904/ ISBN-13: 9780321948908
- 6. Drosophila: A Laboratory Handbook by Michael Ashburner Cold Spring Harbor Laboratory Press, U.S.; 2nd ed. edition ISBN-13: 978-1936113699
- 7. Theory and Problems of Genetics (Schaum's Outline Series) by William Stansfield McGraw-Hill Book Company

MSc GENETICS I YEAR SEMESTER – I THEORY PAPER-II G102T- CELL BIOLOGY AND CYTOGENETICS

Unit 1: Cell cycle and Cell division

- 1.1.Structure and function of cellular organelles (Endoplasmic reticulum, Golgi complex, lysosomes, vacuoles, peroxisomes, mitochondria, chloroplast, secretory pathway)
- 1.2.Cytoskeleton and extracellular matrix (Microtubules, intermediate filaments, microfilaments, integrins, focal adhesions, hemidesmosomes, selectins, cadherins, adherin junctions, desmosomes, tight junctions, gap junctions, plasmodesmata and cell wall)
- 1.3. Cell cycle- Phases of cell cycle, restriction points, cell cycle determining genes, G_0 Phase (Quiescence phase, Points of no return), totipotency of stem cells
- 1.4.Chromosome segregation in mitosis and meiosis- mitotic apparatus, distribution of microtubule organizing centers, formation of synaptonemal complex, cytokinesis
- 1.5.Cell death: Apoptosis (Intrinsic and Extrinsic pathways), necrosis and autophagy

Unit 2: Chromatin organization

- 2.1. Components of chromatin Chromosome structure, Euchromatin and Heterochromatin
- 2.2. Chromatin organization Structure and organization of nucleosome in chromatin, solenoids, loops and scaffolds, nucleosome phasing, active and inactive states of chromatin
- 2.3. Chromatin Modifications Histone modifications and their effect
- 2.4. Dosage compensation, X chromosome inactivation
- 2.5. Evolutionary significance

Unit 3: Chromosome Abnormalities

- 3.1. Structural chromosomal abnormalities- Origin of breaks and gaps, ring chromosomes, Isochromosomes, centric fusion, centric fission- Mechanisms involved. Deletions, duplications, inversions, translocations
- 3.2. Numerical chromosomal abnormalities- Aneuploidy, Polyploidy. Non-Disjunction and Anaphase lag
- 3.3. Chromosome instability and associated syndromes
- 3.4. Sister chromatid exchanges and its significance

Unit 4: Detection and analysis of chromosomal alterations

- 4.1. Karyotyping and its significance
- 4.2. Banding techniques (G, Q, T, R, etc)
- 4.3. Studies on polytene chromosomes for cytogenetic mapping.
- 4.4. Chromosome break points Mapping (Deletion mapping, translocation mapping, Inversion mapping)
- 4.5. Insitu hybridization, FISH, SKY

PRACTICALS G152P: CELL BIOLOGY AND CYTOGENETICS

- 1. Barr Body identification
- 2. Karyotype analysis
- 3. G banding
- 4. Polytene Chromosome
- 5. Induction of polyploidy

- 1. Molecular Cell Biology. 4th edition Lodish H, Berk A, Zipursky SL, et al.New York: W. H. Freeman; 2000.
- 2. Molecular Biology of the Cell: 6th Edition: by Bruce Alberts and Alexander D. Johnson publisher garland Science.
- 3. Human Chromosomes Authors: Orlando J. Miller & Eeva Therman 4th edition.
- 4. Chromosome Techniques (Third Edition) Theory and Practice *Author(s):* Arun Kumar Sharma and Archana Sharma.
- 5. The Cell: A Molecular Approach by Goeffrey Cooper and Robert Hausmann
- 6. Cell & Molecular Biology. E.D.D De Robertis & E.M.F De Robertis, Waverly publication.

MSc GENETICS I YEAR SEMESTER – I THEORY PAPER-III G103T- FUNDAMENTALS OF BIOCHEMISTRY

Unit 1: Bioenergetics, Enzymology and Biomolecules

- 1.1 Laws of thermodynamics, Gibbs free energy, Enthalpy, Entropy
- 1.2 Proteins (Primary, secondary & tertiary structures), Ramachandran plot
- 1.3 Catalysis, enzymes and enzyme kinetics, Briggs-Haldane reaction, Michaelis-Menten equation, Coenzymes, Cofactors, enzyme regulation

Unit 2: Carbohydrate metabolism

- 2.1 Carbohydrates (Classification, monosaccharides, disaccharides, oligosaccharides & polysaccharides)
- 2.2 Glycolysis, TCA cycle, Electron transport chain, Gluconeogenesis, Glycogenesis, Glycogenolysis, Glucuronic acid cycle, Pentose phosphate pathway, Entner-Doudoroff pathway, Cori cycle, Photosynthesis, C3 & C4 cycle

Unit 3: Metabolism of lipids and amino acids

- 3.1 Lipids (Classification, fatty acids, steroids), Hydrolysis of triacyl glycerols, Beta-oxidation, Fatty acid biosynthesis, Prostaglandin biosynthesis, Cholesterol metabolism
- 3.2 Amino acids, Amino acid degradation, Urea cycle, Overview of amino acids biosynthesis
- 3.3 Nitrogen metabolism: Nitrate and ammonium assimilation
- 3.4 Nucleotide biosynthesis and degradation

Unit 4: Cell signalling

- 4.1 Cell communication (autocrine and paracrine), Components of cell signaling (Growth factors, receptors, adaptors and signal transducers)
- 4.2 Calmodulin pathway, GPCR signalling pathways, RTK signaling pathways, Wnt signalling pathways, Toll-like receptor signalling pathways, second messengers
- 4.3 Overview of signalling

PRACTICALS G153P: FUNDAMENTALS OF BIOCHEMISTRY

- 1. Preparation of buffers.
- 2. Spectroscopy, Centrifugation, X-ray diffraction, NMR
- 3. Carbohydrate analysis
- 4. Amino acid analysis
- 5. Isolation and measurement of proteins
- 6. SDS-PAGE
- 7. Column chromatography Gel filtration (size exclusion)

- 1. Lehninger's principles of Biochemistry (David L. Nelson and Michael M. Cox)
- 2. Biochemistry (Jeremy M. Berg, John L. Tymoczko, Lubert Stryer)
- 3. Biochemistry (Donald Voet and Judith G. Voet)

MSc GENETICS I YEAR SEMESTER – I THEORY PAPER-IV G104T- BIOSTATISTICS AND POPULATION GENETICS

Unit 1: Biostatistics

- 1.1.Sampling and Experimental design
- 1.2.Descriptive analysis of data: Types of variables, Data alignment and representation, Measures of central tendency, Measures of dispersion
- 1.3. Concepts of probability: Axioms of probability
- 1.4. Probability distributions: Binomial, Poisson, Normal distribution.
- 1.5.Hypothesis testing: Null and alternate hypothesis, test of significance, Type I and Type II errors, confidence intervals and confidence levels
- 1.6.Estimates and test statistics: Chi-square test (test for goodness of fit, homogeneity test, linkage, test of independence), Z test (for proportions and means), t- test (students t test, paired t test), ANOVA One way and Two-way Anova (F- test)
- 1.7. Correlation and regression (Simple regression, multiple regression, logistic regression)

Unit 2: Population Genetics

- 2.1. Population structure, Gene pool, Estimation of gene and genotype frequencies for biallelic, multiple allelic and X- linked loci
- 2.2. Hardy-Weinberg principle, Establishment of law for a) autosomal biallelic loci b) multiple allelic loci c) X-linked loci
- 2.3. Factors affecting HWE: Mutation, Selection, Migration, Genetic drift, Effective population size
- 2.4. Genetic load: Mutational and segregational load
- 2.5. Linkage disequilibrium
- 2.6. Effects of Inbreeding and assortative mating

Unit 3: Quantitative Genetics

- 3.1. Quantitative traits –features (Population mean, average effect, breeding value, dominance deviation, interaction deviation)
- 3.2. Components of Phenotypic Variance: Reaction Norms, Resemblance between relatives
- 3.3. Genetic architecture of quantitative variance, Genotypic Values: Additivity, dominance and epistasis, genetic covariance (Offspring and one parent, offspring and mid-parent, half sibs, full sibs)
- 3.4. Correlated characters, GXE effects and maternal effects
- 3.5. Heritability (ANOVA and Regression)
- 3.6. Heterosis and Inbreeding depression

Unit 4: Genetic Distance and Phylogenetic Analysis

- 4.1. Genetic diversity
- 4.2. Genetic distance and measures of relatedness, Molecular dating
- 4.3. Cluster Analysis: Construction of cluster diagrams and dendrograms
- 4.4. Principal Component Analysis
- 4.3. Phylogenetic analysis (UPGMA)
- 4.4. Bayesian methods for phylogenetic estimation

PRACTICALS G154P: BIOSTATISTICS AND POPULATION GENETICS

- 1. Data alignment and Descriptive analysis of data- Manual and Excel
- 2. Problems on probability
- 3. Problems on Chi-Square test
- 4. Problems on Z test
- 5. Problems on t-test
- 6. One way and two-way ANOVA
- 7. Calculation of correlation and regression
- 8. Calculation of gene and genotype frequencies
- 9. Problems on Hardy-Weinberg Equilibrium
- 10. Calculation of inbreeding coefficient
- 11. Estimation of heritability
- 12. NEIs Index

- 1. Hedrick P.W. -Jones & Bartlett, Genetics of Population
- 2. Hartl D. L. And Clark A. G. , Principle of Population Genetics, Sinauer Associates
- 3. Danial, W. W, Biostatistics, Wiley
- 4. Khan & Khanum (2004), Fundamentals of Biostatistics, II Revised Edition, Ukaaz Publication
- 5. Bailey, N.T.J, Statistical methods in Biology, Cambridge Univ. Press
- 6. Falconer, D (1995) Introduction to Quantitative Genetics, 4th edition, Longman, London.
- 7. Stickberger, M. W (1990) Evolution, Jones and Bartlett, Boston
- 8. Fundamentals of Biostatistics, P Hanmanth Rao and K.Janardhan.
- 9. Population Genetics- C C Lee

MSc GENETICS I YEAR SEMESTER – II THEORY PAPER-I G201T- GENOME ORGANIZATION AND MAINTENANCE

Unit 1: Genome Organization

- 1.1.DNA structure
- 1.2. Prokaryotic genome organization
- 1.3. Eukaryotic genome organization
- 1.4.Extrachromosmal genetic elements (plasmids, mitochondrial genome, chloroplast genome)
- 1.5. Horizontal gene transfer (transformation, transduction, conjugation, Genome islands)
- 1.6. Transposable elements and their implication in genome evolution
- 1.7.Bacteriophages (lambda phage)

Unit 2: Genome Replication and Replication Associated Errors

- 2.1. DNA replication
- 2.2. Bacterial chromosomal replication
- 2.3. Eukaryotic chromosomal replication
- 2.4. Plasmid Replication
- 2.5. Replication of mitochondrial and chloroplast genomes
- 2.6. Regulation of genome replication
- 2.7. Replication associated errors

Unit 3: DNA Damage and Repair

- 3.1. Internal and external agents causing DNA damages
- 3.2. DNA damages (Oxidative damages, Depurinations, Depyrimidinations, O6-methylguanines, Cytosine deamination, single and double strand breaks)
- 3.3. Mechanisms of DNA damage (transition, transversion, frameshift, nonsense mutations)
- 3.4. Repair mechanisms (Photo reactivation, excision repair, mismatch repair, post replication repair, SOS repair)

Unit 4: Genome Rearrangements

- 4.1. Whole genome duplication
- 4.2. Segmental duplication
- 4.3. Single nucleotide variations
- 4.4. Homologous recombination
- 4.5. Non-homologous end joining
- 4.6. Site-specific recombination
- 4.7 Transposon and repeats mediated rearrangements
- 4.8. Gene conversion

PRACTICALS

G251P: GENOME ORGANIZATION AND MAINTENANCE

- 1. Isolation of genomic DNA from plant tissue
- 2. Isolation of genomic DNA from Animal tissue
- 3. Isolation of genomic DNA from human blood
- 4. Induction of mutants using chemical agents
- 5. Checking of DNA Purity and concentration agarose and spectrophotometer
- 6. Problems on DNA Kinetics
- 7. Tm determination of DNA
- 8. Comet Assay

- 1. Genetics A Conceptual Approach by Benjamin A. Pierce
- 2. Genome organization and function in the cell nucleus; edited by Karsten Rippe Wiley-VCH Verlag GmbH & Co. KGaA, Germany.2012.
- Bacterial Genomics: Genome Organization and Gene Expression Tools by Aswin Sai Narain Seshasayee, Publisher: Cambridge University Press (2015) ISBN-10: 1107079837.
- 4. Genomes. 2nd edition. Brown TA. Oxford: Wiley-Liss; 2002.
- 5. Organization of the Prokaryotic Genome by Robert L. Charlebois ASM Press, 1999.
- 6. Sequence Evolution Function: Computational Approaches in Comparative Genomics. By Koonin EV, Galperin MY. Kluwer Academic; Boston: 2003.
- 7. The Cell: A Molecular Approach. 2nd edition. by Cooper GM. Sunderland (MA): Sinauer Associates; 2000.
- 8. Molecular Biology of the Cell. 4th edition by Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002
- 9. DNA Damage Repair, Repair Mechanisms and Aging by Allison E. Thomas Nova Science Publisher's, 2010.
- Chromosomal Translocations and Genome Rearrangements in Cancer by Janet D. Rowley, Michelle M. Le Beau, Terence H. Rabbitts Springer International Publishing, 2015.

MSc GENETICS I YEAR SEMESTER – II THEORY PAPER-II G202T- GENE EXPRESSION AND REGULATION

Unit 1: Structure of Prokaryotic and Eukaryotic Genes

- 1.1.Structure of prokaryotic genes
- 1.2. Organization of prokaryotic genes into operons
- 1.3.Structure of eukaryotic genes (introns, exons, UTRs, core & proximal promoters, enhancers)
- 1.4.Number of genes in prokaryotes and eukaryotes
- 1.5.RNA coding genes (rRNA, tRNA)
- 1.6.Regulatory small RNA coding genes (miRNAs)

Unit 2: Gene Expression

- 2.1. Transcription machinery in prokaryotes and eukaryotes
- 2.2. Transcription process (initiation, elongation, termination, processing of transcripts)
- 2.3. Translational machinery in prokaryotes and eukaryotes
- 2.4. Translation process (initiation, elongation, termination, folding, processing)
- 2.5. Co-ordinated regulation of gene expression in prokaryotes and eukaryotes

Unit 3: Regulation of Gene Expression

- 3.1. Regulation of transcription (proximal promoter, specific transcription factors, enhancers, multiple promoters, alternate transcription initiation sites, multiple PolyA sites)
- 3.2. Post transcriptional regulation of gene expression (pre-mRNA splicing, miRNA based regulation)
- 3.3. Alternate transcript formation (Exon skipping, intron inclusion, alternate splice sites, 5'end variations, 3'end variations)
- 3.4. Regulation of translation (codon usage/bias, 5'UTR based signals, upstream ORFs, upstream, start codons, alternate splicing in UTRS, 3'-UTR based regulation)
- 3.5. Post translational regulation of gene expression

Unit 4: Epigenetic Regulation of Gene Expression

- 4.1. Overview of epigenetic regulation
- 4.2. Chromatin remodelling and gene expression
- 4.3. Histone modifications and gene expression
- 4.4. Small RNA based epigenetic regulation
- 4.5. Propagation of epigenetic regulation (genome imprinting)

PRACTICALS G252P: GENE EXPRESSION AND REGULATION

- 1. Plasmid DNA isolation
- 2. Isolation of mRNA trizol method
- 3. Understanding Human genome project
- 4. Epigenetic Analysis Insilico
- 5. Serum miRNA analysis

- 1. Lewin's Genes XI (Jocelyn E. Krebs, Benjamin Lewin, Elliott S. Goldstein, Stephen T. Kilpatrick)
- 2. Molecular biology of the Gene (James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick)
- 3. Genomes 4 (T.A. Brown)
- Molecular Biology of the Gene by James D. Watson, A. Baker Tania, P. Bell Stephen, Gann Alexander, Levine Michael, Losick Richard (Pearson 7th Edition)
- 5. Molecular Biology of the Cell by Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts 6th Edition
- 6. Cell and Molecular Biology: Concepts and Experiments by Gerald Karp , James G. Patton 7th Edition
- 7. Genes & Genomes Paul Berg
- 8. Modern Genetic Analysis by Griffiths AJF, Gelbart WM, Miller JH

MSc GENETICS I YEAR SEMESTER – II THEORY PAPER-III G203T- PLANT GENETICS AND MOLECULAR BREEDING

Unit 1: Principles of Plant Breeding

- 1.1 Introduction to plant breeding. Domestication of crop plants Centres of origin and diversity; Basic features of plant breeding and Objectives of plant breeding
- 1.2 Plant genetics resources and conservation strategies. Sources of plant genetics resources; Methods of germplasm conservation; Evaluation and utilization of plant genetic resources
- 1.3 Reproductive systems in plants: Sexual reproduction self and cross fertilization Autogamy, Allogamy and often cross pollinated plants; Asexual reproduction and Apomixis
- 1.4 Genetic basis of breeding: Mating systems of plants; Wide hybridization Inter-specific crosses and inter-generic hybridization; Role of wide hybridization in crop improvement

Unit 2: Plant Breeding Methodologies

- 2.1 Breeding Methods in self pollinating crops: Pure line selection; Pedigree method; Bulk population methods; Single seed descent method; Back cross method and Multi lines
- 2.2 Breeding methods in cross pollinating crops: Mass selection; Ear-to-row selection; Progeny selection and Recurrent selection methods, Hybrid Breeding – Development and evaluation of inbred lines, A, B and R lines, Development of hybrids., male sterility systems
- 2.3 Mutation breeding: Physical and Chemical mutagens; Mutation breeding in seed crops and vegetative propagation; and Tilling
- 2.4 Cultivar release and certification, Cultivar release; Seed certification and multiplication; Plant breeders rights

Unit 3: Specific Breeding Methods

- 3.1 Breeding for disease resistance. Genetics of pathogenecity; Genetics of disease resistance; Methods of breeding for disease resistance
- 3.2 Breeding for insect resistance: Mechanisms of insect resistance; Breeding methods for pest resistance
- 3.3 Breeding for abiotic stress tolerance, Breeding for drought, salinity, temperature and flood tolerance
- 3.4 Breeding for nutritional improvement, Nutritional quality, Improved protein content and Improved oil quality

Unit 4: Biotechnological Approaches for Crop Improvement

- 4.1 Plant tissue culture techniques in crop improvement. Introduction to plant cell-tissue culture techniques, Haploids and di-haploids, Somaclonal variation, Protoplast fusion, Micro propagation
- 4.2 Transgenics in crop improvement: Gene transfer methods in plants; Production of transgenics for biotic and abiotic stress tolerance; Transgenic male-sterility systems and development of hybrids; Cis-genic approaches
- 4.3 Gene silencing: RNAi and its applications for crop improvement
- 4.4 Molecular plant breeding tools, Molecular markers, Marker assisted breeding, Genome mapping QTL mapping

PRACTICALS

G253P: PLANT GENETICS AND MOLECULAR BREEDING

- 1. Floral morphology and pollination methods in self-pollinating and cross pollinating crops
- 2. Callus Initiation and Plantlet Regeneration
- 3. Agrobacterium/Biolistic mediated gene transfer
- 4. RAPD/SSR analysis
- 5. Linkage analysis
- 6. Heterosis

- 1. Principles of Plant Genetics and Breeding (2012) by George Acquaah, Second Edition Wiley- Blackwell Publishers
- 2. Molecular Plant Breeding (2010) by Yunbi Xu, MPG Books Group Publishers
- 3. Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches (2002) by G.S.Chahal, S.S.Gosal, Alpha Science International Ltd. Harrow, U.K
- 4. General Plant Breeding (2006) by A.R. Dabholkar Concept Publishing Company, New Delhi
- 5. Plant Tissue Culture: Techniques and Experiments (2013) by Roberta H. Smith, Academic Press, U.K
- 6. Plant Tissue Culture and Biotechnology: Emerging Trends (2003) by P.B. Kavi Kishor, Universities Press
- 7. Plant Tissue Culture: Basic and Applied (2005) by Timir Baran Jha, Universities Press
- 8. Plant Biotechnology: Practical Manual (2007) by C. C. Giri, Archana Giri, I.K International Publishers

MSc GENETICS I YEAR SEMESTER – II THEORY PAPER-IV G204T- HUMAN GENETICS

Unit 1: Genes in Families

1.1 Patterns of Inheritance (AD, AR, XD, XR, YL, Maternal inheritance)

1.2 Pedigree analysis

1.3 Extensions to Mendelian inheritance

1.3.1 Incomplete penetrance and variable expressivity

1.3.2 Epistasis, pleiotropism

- 1.3.3 Gametic imprinting
- 1.3.4 Mosaicism
- 1.3.5 Anticipation

1.3 Genetic and phenotypic heterogeneity (Inter and Intra allelic heterogeneity)

1.4 Segregation analysis

1.5 Analysis of multifactorial condition-polygenic inheritance

- 1.5.1 Threshold model
- 1.5.2 Twin studies in genetic analysis

Unit 2: Linkage Analysis

2.1 Linkage detection and estimation

- 2.1.1 Parametric and non-parametric methods: Lod score, y- statistics, sib-pair method, IBD, affected relatives methods
- 2.2 Linkage analysis through family studies-Homozygosity mapping
- 2.3 Extensions of linkage studies for genetic heterogeneity, reduced penetrance and epistasis
- 2.4 Population based Linkage analysis
- 2.5 Whole genome linkage analysis
- 2.6 Genetic models and Allelic effects
- 2.7 Different types of genetic markers
- 2.8 Linkage disequilibrium analysis
- 2.9 Haplotype analysis
- 2.10 Analysis of gene-phenotype interactions

Unit 3: Genetic Basis of Human Diseases

- 3.1 Molecular pathology of Chromosome anomalies
 - 3.1.1 Numerical chromosomal disorders
 - 3.1.2 Structural chromosomal disorders
 - 3.1.3 Chromosome instability syndromes
- 3.2 Molecular basis of single gene disorders
 - 3.2.1 Autosomal Dominant and recessive disorders
 - 3.2.2 X-linked dominant and recessive disorders, Y-linked, X-influenced and X-limited disorders
- 3.3 Inherited biochemical diseases
 - 3.3.1 Enzyme defects- amino acid metabolism
 - 3.3.2 Lipid metabolic disorders
 - 3.3.3 Carbohydrate associated disorders
 - 3.3.4 Defects in purine metabolism
 - 3.3.5 Defects in membrane transport
 - 3.3.6 Defects in structural proteins
 - 3.3.7 Collagen disorders
 - 3.3.8 Defects in receptor proteins
- 3.4 Complex genetic diseases Hypertension, Diabetes mellitus
- 3.5 Mitochondrial diseases
- 3.6 Cancer as a genetic disease
- 3.7 Familial and sporadic cancers Oncogenes, tumor suppressor genes, mutator genes

Unit 4: Strategies for Disease Gene Identification and Gene Mapping

- 4.1. Approaches for gene identification
 - 4.1.1 Functional cloning
 - 4.1.2 Positional cloning
 - 4.1.3 Position independent candidate gene approach
 - 4.1.4 Position dependent candidate gene approach
 - 4.1.5 Epigenetic signatures
 - 4.1.6 Transcriptome analysis
- 4.2 Association studies
- 4.3 Case-control studies
 - 4.3.1 Population based studies
 - 4.3.2 GWAS
- 4.4 Mapping:
 - 4.4.1 Low resolution mapping: Sub- chromosomal mapping, Chromosomal break points, FISH, cytogenetic methods, Somatic cell hybrid mapping, Radiation hybrid mapping
 - 4.4.2 High resolution mapping: DNA FIBRE FISH, Restriction mapping, VNTR microsatellite markers for mapping, EST mapping, STS mapping, SNP mapping, Conserved region mapping: IRE, CpG site mapping, Promoter site recognition
 - 4.4.3 Sequencing
- 4.5 Mapping for single gene disorders
- 4.6 Mapping for complex genetic disorders

PRACTICALS

G254P: HUMAN GENETICS

- 1. Pedigree analysis
- 2. Sister chromatid exchanges
- 3. Amino acidopathies and carbohydrate metabolic error identification
- 4. Segregation analysis
- 5. Problems on Parametric and non-parametric variables
- 6. Lod score
- 7. Sib pairs
- 8. Haplotype analysis
- 9. LD Maps

- 1. Cummings, M.R. (2009). Human Heredity: Principles and Issues. Pacific Grove, CA:Brooks/Cole.
- 2. A.G. Motulsky and F. Vogel (1986) Human Genetics
- 3. R. F. Mueller and I.D Yound (2001) Emery's Elements of Medical Genetics
- 4. Curt Stern (1960) Principles of Human Genetics
- 5. Robert et al., (2015)Thompson and Thompson Genetics in Medicine, Elsevier, Saunders, London
- 6. Gardner, A. and Davies, T. (2009) Human Genetics-Scion Publishing, 2nd ed.
- Lewis, R. (2008) Human Genetics: Concepts and Applications, McGraw-Hill Publishing, New York, 8th ed.
- 8. Lewis, R. (2011). Human Genetics The Basics, Routledge, London
- 9. Mange, E.J. and Mange, A.P. (1999). Basic Human Genetics. Sinauer, Sunderland
- 10. Scriver, C.R. A.L. Beudit, W.S. Sty abnd D. Valle, Molecular Basis of Inherited Diseases, (6th Edition 1989) by EdsO McGrawHill, New York.
- 11. Tom Strachan and Andrew Read (1996) Human Molecular Genetics
- 12. H. Harris (1975) Principles of Human Biochemical Genetics