B.Sc., Chemistry, I&II Year, CBCS Syllabus

	Telangana State Council of Higher Education, Core Syllabi for all Univ	U	,	CS Common
	PROPOSED SCHEME FOR CHOICE BASE			
	B.Sc., Chemistry			
FIRST YEAR- SEMSTER I				
CODE	COURSE TITLE	COURSE	HPW	CREDITS
BS 101	Communication	AECC-1	2	2
BS 101 BS 102	English	CC-1A	5	5
BS 102	Second language	CC-2A	5	5
BS 104	Optional I	DSC-1A	4T+2P=6	4+1=5
BS 105	Optional II	DSC-2A	4T+2P=6	4+1=5
BS 106	Optional III- Chemistry - I	DSC-3A	4T)	4
	Laboratory Course – I		= 6	├ =5
	(Qualitative Analysis – I)		2P	1
	Total Credits			27
FIRST YEAR- SEMSTER II				
BS 201	Environmental studies	AECC-2	2	2
BS 202	English	CC-1B	5	5
BS 203	Second language	CC-2B	5	5
BS 204	Optional I	DSC-1B	4T+2P=6	4+1=5
BS 205	Optional II	DSC-2B	4T+2P=6	4+1=5
	Optional III- Chemistry - II	DSC-3B		
BS 206	Laboratory Course - II		4T]	4
	(Qualitative Analysis – II)		= 6	≻ =5
			2 P	1
	Total Credits			27
SECOND YEAR- SEMSTER III				
BS 301	Safety Rules in Chemistry Laboratory and Lab	SEC-I	2	2
	Reagents			
BS 302	English	CC-1C	5	5
BS 303	Second language	CC-2C	5	5
BS 304	Optional I	DSC-1C	4T+2P=6	4+1=5
BS 305	Optional II	DSC-2C	4T+2P=6	4+1=5
BS 306	Optional III- Chemistry - III	DSC-3C	4 T)	4
	Laboratory Course - III		= 6	≻ =5
	(Quantitative Analysis – I)		2P J	1
	Total Credits			27
	SECOND YEAR- SEMST		1	Γ
BS 401	Remedial Methods for Pollution, Drinking Water and Soil Fertility	SEC-2	2	2
BS 402	English	CC-1D	5	5
BS 403	Second language	CC-2D	5	5
BS 404	Optional I	DSC-1D	4T+2P=6	4+1=5
BS 405	Optional II	DSC-2D	4T+2P=6	4+1=5
BS 406	Optional III- Chemistry - IV		4T]	4
	Laboratory Course - IV	DSC-3D	= 6	├ = 5
	(Quantitative Analysis – II)		2P ^J	1
Total Credits 27				

***Optional III Chemistry** AECC: Ability Enhancement Compulsory Course: SEC: Skill Enhancement Course; DSC: Discipline Specific Course; GE: Generic Elective;

B.Sc I yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER I Paper – I Chemistry - I

Unit-I (Inorganic Chemistry)

S1-I-1. s-block elements:

General Characteristics of groups I and II elements, Diagonal relationship between Li and Mg, Be and Al **2** h

S1-I-2. p-block elements 1:

Group–13:Synthesis and structure of diborane and higher Boranes (B_4H_{10} and B_5H_9), Boron nitrogen compounds ($B_3N_3H_6$ and BN), Lewis acid nature of BX₃

Group – 14: Carbides-Classification – ionic, covalent, interstitial – synthesis.Structures and reactivity. Industrial application. Silicones – Preapartion – a) direct silicon process b) use of Grignard reagent c) aromatic silylation. Classification – straight chain, cyclic and cross-linked.

Group – 15: Nitrides – Classification – ionic, covalent and interstitial. Reactivity – hydrolysis.Preparation and reactions of hydrazine, hydroxyl amine, phosphazenes.

S1-I-3. General Principles of Inorganic qualitative analysis 6 h

Anion analysis: Theory of sodium carbonate extract, classification and reactions of anions- CO_3^{2-} , CI^- , Br^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , CH_3COO^- , NO_3^{--} .

Cation Analysis: Principles involved - Solubility product, common ion effect, general discussion for the separation and identification of group I individual cations $(Hg_2^{2+}, Ag+, Pb+)$ with flow chart and chemical equations. Principle involved in separation of group II & IV cations.

General discussion for the separation and identification of group II (Hg^{2+} , Pb^{2+} , Bi^{3+} , Cd^{2+} , Sb^{2+}), III (Al^{3+} , Fe^{3+}), IV ((Mn^{2+} , Zn^{2+}) individual cations with flow chart and chemical equations. Application of concept of hydrolysis in group V cation analysis. General discussion for the separation and identification of group V individual cations (Ba^{2+} , Sr^{2+} , Ca^{2+}) with flow chart and chemical equations. Theory of flame test. Identification of Group VI cations (Mg^{2+} , NH_4^+).

15h(1 hr/week)

.....

Unit - II (Organic Chemistry)

S1-O-1:Structural Theory in Organic Chemistry

Bond polarization: Factors influencing the polarization of covalent bonds, electro negativity – inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acids (c) Stability of carbonium ions. Resonance - Mesomeric effect, application to (a) acidity of phenol. (b) acidity of carboxylic acids and basicity of anilines. Stability of carbo cations, carbanions and free radicals. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes.

Types of organic reactions: Addition reactions- electrophilic, nucleophilic and free radical. Substitution reactions – electrophilic, nucleophilic and free radical. Elimination and Rearrangement reactions– Examples.

S1-O-2:Acyclic Hydrocarbons

Alkanes– Methods of preparation: Corey-House reaction, Wurtz reaction, from Grignard reagent, Kolbe synthesis. Chemical reactivity - inert nature, free radical substitution, Halogenation example- reactivity, selectivity and orientation.

Alkenes - Preparation of alkenes (with mechanism) (a) by dehydration of alcohols (b) dehydrohalogenation of alkyl halides (c) by dehalogenation of 1,2 dihalides, Zaitsev's rule. Properties: Addition of Hydrogen – heat of hydrogenation and stability of alkenes. trans-addition of halogen and its mechanism. Addition of HX, Markonikov's rule, addition of H₂O, HOX, H₂SO₄ with mechanism and addition of HBr in the presence of peroxide (anti – Markonikov's addition). Oxidation (cis – additions) – hydroxylation by KMnO₄, OsO₄, trans addition- peracids (via epoxidation), hydroboration, ozonolysis – location of double bond. Dienes – Types of dienes, reactions of conjugated dienes – 1,2 and 1,4 addition of HBr to 1,3 – butadiene and Diels – Alder reaction.

Alkynes– Preparation by dehydrohalogenation of vicinal dihalides, dehalogenation of tetrahalides. Physical Properties: Acidity of terminal alkynes (formation of metal acetylides) preparation of higher alkynes, Chemical reactivity – electrophilic addition of X_2 , HX, H₂O (tautomerism), Oxidation (formation of enediol, 1,2 diones and carboxylic acids) and reduction (Metal-ammonia reduction, catalytic hydrogenation)

S1-O-3:Alicyclic Hydrocarbons

Nomenclature, preapartion by Freunds method, Dickmann, heating dicarboxylic metal salts. Properties – reactivity of cyclo propane and cyclo butane by comparing with alkanes. Stability of cycloalkanes – Baeyer strain theory, Sachse and Mohr predictions and Pitzer strain theory. Conformational structures of cyclopentane, cyclohexane.

6 h

3 h

Unit-III (Physical Chemistry)

S1-P-1: Atomic structure and elementary quantum mechanics

Black body radiation, heat capacities of solids, Rayleigh Jeans law, Planck's radiation law, photoelectric effect,Limitations of classical mechanics, Compton effect, De Broglie's hypothesis. Heisenberg's uncertainty principle, Schrodinger's wave equation and its importance. Physical interpretation of the wave function, significance of ψ and ψ^2 , a particle in a box, energy levels, wave functions and probability densities. Schrodinger wave equation for H-atom. Separation of variables, radial and angular functions (only equation), hydrogen like wave functions, quantum numbers and their importance.

S1-P-2:Gaseous State

Deviation of real gases from ideal behavior. van der Waals equation of state. Critical phenomenon. PV isotherms of real gases, continuity of state. Andrew's isotherms of CO₂. The van der Waal's equation and critical state. Derivation of relationship between critical constants and van der Waal's constants. The law of corresponding states, reduced equation of states. Joule Thomson effect and inversion temperature of a gas. Liquifaction of gases: i) Linde's method based on Joule Thomson effect ii) Claude's method based on adiabatic expansion of a gas.

S1-P-3: Liquid State

Intermolecular forces, structure of liquids (qualitative description). Structural differences between solids, liquids and gases. Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). Liquid crystals, the mesomorphic state: Classification of liquid crystals in to Smectic and Nematic, differences between liquid crystal and solid / liquid. Application of liquid crystals as LCD devices.

Unit – IV (GeneralChemistry)

S1-G-1 Chemical Bonding

Ionic solids- lattice and solvation energy, solubility of ionic solids, Fajan's rule, polarity and polarizability of ions, covalent nature of ionic bond, covalent bond - Common hybridization and shapes of molecules.

Molecular orbital theory: Shapes and sign convention of atomic orbitals. Modes of overlapping. Concept of σ and π bonds. Criteria for orbital overlap. LCAO concept. Types of molecular orbitals- bonding, antibonding and non bonding. MOED of homonuclear diatomics - H₂, N₂, O₂,O₂⁻,O₂²⁻,F₂ (unhybridized diagrams only) and heteronuclear diatomics CO, CN⁻ NO, NO⁺ and HF. Bond order, stability and magnetic properties.

S1-G-2 Evaluation of analytical data

Significant figures, accuracy and precision. Errors-classification of errors- determinate and indeterminate errors, absolute and relative errors, propagation of errors in mathematical operations – addition, substraction, division and multiplication (with respect to determinate errors).

3

15 h (1 hr/week)

11 h

4 h

20

15 h (1 hr/week)

5 h

4 h

References:

Unit- I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. Chem.
- 4. Vogel's Qualitative Inorganic Analysis by Svehla
- 5. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn.
- 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989.
- 7. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999.
- 8. Qualitative analysis by Welcher and Hahn.
- 9. Textbook of Inorganic Chemistry by R Gopalan
- 10. College Practical chemistry by V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati

Unit- II

- 1. Text book of organic chemistry by Morrison and Boyd.
- 2. Text book of organic chemistry by Graham Solomons.
- 3. Text book of organic chemistry by Bruice Yuranis Powla.
- 4. Text book of organic chemistry by Soni.
- 5. General Organic chemistry by Sachin Kumar Ghosh.
- 6. Text book of organic chemistry by C N pillai

Unit III

- 1. Principles of physical chemistry by Prutton and Marron.
- 2. Text Book of Physical Chemistry by Soni and Dharmahara..
- 3. Text Book of Physical Chemistry by Puri and Sharma.
- 4. Text Book of Physical Chemistry by K. L. Kapoor.
- 5. Physical Chemistry through problems by S.K. Dogra.
- 6. Text Book of Physical Chemistry by R.P. Verma.
- 7. Elements of Physical Chemistry byLewis Glasstone.

Unit IV

1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.

- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. Chem
- 4. Analytical chemistry by G. L. David Krupadanam, D. Vijaya Prasad, K. Varaprasada Rao, K.L.N. Reddy and C. Sudhakar

Laboratory Course

45h (3 h / week)

Paper IQualitative Analysis - I

I. Preparations:

Tetrammine copper (II) sulphate,
Potash alum KAl(SO₄)₂. 12H₂O,
Bis (dimethylglyoximato) nickel(II)

II. Analysis of two anions (one simple and one interfering)

B.Sc I vr CHEMISTRY SEMESTER WISE SYLLABUS **SEMESTER II** Paper II **Chemistry - II**

Unit-I (Inorganic Chemistry)

S2-I-1 p-block Elements -II

7 h

15 h (1 hr/week)

Oxides: Types of oxides (a) Normal- acidic, basic amphoteric and neutral (b) Mixed(c) sub oxide d) peroxide e) superoxide. Structure of oxides of C, N, P, S and Cl - reactivity, thermal stability, hydrolysis.

Oxy acids: Structure and acidic nature of oxyacids of B, C, N, P, S and Cl.Redox properties of oxyacids of Nitrogen: HNO₂ (reaction with FeSO₄, KMnO₄, K₂Cr₂O₇), HNO₃ (reaction with H_2S , Cu), HNO₄ (reaction with KBr, Aniline), $H_2N_2O_2$ (reaction with KMnO₄). Redox properties of oxyacids of Potasium: H₃PO₂ (reaction with HgCl₂), H₃PO₃ (reaction with AgNO₃, CuSO₄).

Redox properties of oxyacids of Sulphur: H_2SO_3 (reaction with KMnO₄, $K_2Cr_2O_7$), H_2SO_4 (reaction with Zn, Fe, Cu), $H_2S_2O_3$ (reaction with Cu, Au), H_2SO_5 (reaction with KI, FeSO₄), $H_2S_2O_8$ (reaction with FeSO₄, KI)

Interhalogens- classification- general preparation- structures of AB, AB3, AB5 and AB7 type and reactivity. Poly halides- definition and structure of ICl_2 , ICl_4 and I_3 .Comparison of Pseudohalogens with halogens.

S2-I-2 Chemistry of Zero group elements

General preparation, structure, bonding and reactivity of Xenon compounds - Oxides, Halides and Oxy-halides. Clatherate compounds and Anomalous behavior of He (II)

S2-I-3Chemistry of d-block elements

Characteristics of d-block elements with special reference to electronic configuration variable valence, ability to form complexes, magnetic properties &catalytic properties. Stability of various oxidation states and SRP Comparative treatment of second and third transition series with their 3d analogues. Study of Ti, Cr and Cu traids. Titanium triad electronic configuration and reactivity of +3 and +4 states - oxides and halides. Chromium triad – reactivity of +3 and +6 states. Copper triad – reactivity of +1, +2 and +3 states.

Unit - II(Organic chemistry)

S2-O-1:Aromatic Hydrocarbons

Concept of aromaticity –definition, Huckel's rule – application to Benzenoids and Non – Benzenoids (cyclopropenyl cation, cyclopentadienyl anion and tropylium cation).

Preapartions: From acetylene, phenols, benzene carboxylic acids and sulphonic acids

Reactions - General mechanism of electrophilic substitution, mechanism of nitration, sulphonation, and halogenation, Friedel Craft's alkylation(polyalkylation) and acylation. Orientation of aromatic substitution - Definition of ortho, para, and meta directing groups. Ring activating and deactivating groups with examples. Orientation - (i) activating groups: Amino, methoxy and alkyl groups. (ii) Deactivating groups - carboxy, nitro, nitrile, carbonyl and sulphonic acid& halo groups.

15 h (1 hr/week)

7h

2 h

S2-O-2:Arenes and Polynuclear Aromatic Hydrocarbons

Preparation of alkyl benzenes by Friedel Craft's alkylation, Friedel Craft's acylation followed by reduction, Wurtz-Fittig reaction. Chemical reactivity: Ring substitution reactions, side chain substitution reactions and oxidation.

Polynuclear hydrocarbons – Structure of naphthalene and anthracene (Molecular Orbital diagram and resonance energy) Reactivity towards electrophilic substitution. Nitration and sulphonation as examples.

S2-O-3: Halogen compounds

Nomenclature and classification: alkyl (primary, secondary, tertiary), aryl, aralkyl, allyl, vinyl, benzyl. Chemical reactivity - reduction, formation of RMgX, Nucleophilic substitution reactions – classification into S_N^1 and S_N^2 . Mechanism and energy profile diagrams of S_N^1 and S_N^2 reactions. Stereochemistry of S_N^2 (Walden Inversion) 2-bromobutane, S_N^1 (Racemisation) 1-bromo-1-phenylpropane explanation of both by taking the example of optically active alkyl halide. Structure and reactivity – Ease hydrolysis - comparison of alkyl, vinyl, allyl, aryl, and benzyl halides.

Unit – III (Physical Chemistry)

S2-P-1:Solutions

Liquid - liquid mixtures, ideal liquid mixtures, Raoult's and Henry's laws. Non ideal systems. Azeotropes $HCl-H_2O$ and $C_2H_5OH - H_2O$ systems. Fractional distillation,. Partially miscible liquids- Phenol – Water, Trimethyl amine – Water and Nicotine – Water systems. Lower upper consolute temperatures. Effect of impurity on consolute temperature.Immiscible liquids andsteam distillation. Nernst distribution law. Calculation of the partition coefficient. Applications of distribution law with solvent extraction.

S2-P-2: Dilute Solutions & Colligative Properties

Dilute Solutions, Colligative Properties, Raoult's law, relative lowering of vapour pressure, molecular weight determination. Osmosis - laws of osmotic pressure, its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, Van't hoff factor, degree of dissociation and assocoation of solutes.

S2-P-3: Solid state Chemistry

Laws of Crystallography – (i) Law of Constancy of interfacial angles (ii) Law of Symmetry, Symmetry elements in crystals (iii) Law of rationality of indices. Definition of space lattice, unit cell. Bravais Lattices and Seven Crystal systems (a brief review). X-ray diffraction by crystals; Derivation of Bragg's equation, Determination of structure of NaCl, KCl & CsCl (Bragg's method and Powder method).

15 h (1 hr/week)

7

5 h

5 h

15 h (1 hr/week)

5 h

3 h

5 hrs

References

8

S3-G-2: Theories of bonding in metals:

Valence bond theory, Explanation of metallic properties and its limitations, Free electron theory, thermal and electrical conductivity of metals, limitations, Band theory, formation of bands, explanation of conductors, semiconductors n-type and p-type, extrinsic & intrinsic semiconductors, and insulators.

S2-G-3: Material Science

Classification of materials- classification as metals, ceramics, organic polymers, composites, biological materials etc. The property of super conductivity of materials. Super conducting materials- elements, alloys and compounds. Properties of super conductors- zero resistivity, Meisener effect and thermal properties. Compositesmeaning of composites, advanced composites, classification -particle rein forced fiber reinforced and structural composites general characters of composite materials-Particlereinforced composites - large particle and dispersion- strengthened composite. Fiber reinforced composites (continuous and discontinuous fiber composites).

S2-G-1: Theory of Quantitative Analysis

Volumetric Analysis: Introduction, standard solutions, indicators, end point, titration curves, Types of titrations: i)neutralization titration- principle, theory of acid base indicators, titration curves and selection of indicators- strong acid - strong base, strong acid -weak base, weak acid- strong base and weak acid -weak base.

Gravimetric analysis- Introduction, nucleation, precipitation, growth of precipitate, filtration and washing, drying and incineration of precipitate, coprecipitation and post precipitation. Determination of Ni²⁺

5 hours

5 h

Unit I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.
- 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn
- 4. Wiley Publishers 2001. Chem
- 5. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989.
- 6. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999.
- 7. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn.
- 8. Textbook of inorganic chemistry by R Gopalan

Unit II

- 1. Text book of organic chemistry by Morrison and Boyd.
- 2. Text book of organic chemistry by Graham Solomons.
- 3. Text book of organic chemistry by Bruice Yuranis Powla.
- 4. Text book of organic chemistry by Soni.
- 5. General Organic chemistry by Sachin kumar Ghosh.
- 6. Text book of organic chemistry by C N pillai

Unit III

- 1. .Principles of physical chemistry by Prutton and Marron.
- 2. Text Book of Physical Chemistry by Soni and Dharmahara.
- 3. Text Book of Physical Chemistry by Puri and Sharma
- 4. Text Book of Physical Chemistry by K. L. Kapoor
- 5. Physical Chemistry through problems by S.K. Dogra.
- 6. Elements of Physical Chemistry by Lewis and Glasstone.
- 7. Material science by Kakani & Kakani

Unit IV

- 1. Vogel's Text Book of Quantitative Analysis by G.H.Jeffery, J.Bassett, J.Mendham and R.C. Denney 5th edn Addison Wesley Longman Inc. 1999.
- 2. Quantitative Analysis by Day and Underwood Prentice Hall (India) VI Edn..
- 3. Nano: The Essentials by T. Pradeep, McGraw-Hill Education.
- 4. Chemistry of nanomaterials: Synthesis, Properties and applications by CNR Rao et.al.
- 5. Nanostructured Materials and Nanotechnology, edited by Hari Singh Nalwa, Academic Press
- 6. College Practical chemistry by V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati

Laboratory Course

Paper II - Qualitative Analysis - II

I Semi micro analysis of mixtures

Analysis of two anions and two cations in the given mixture.

Anions: $\text{CO}_3^{2^-}$, $\text{SO}_3^{2^-}$, $.\text{S}^{2^-}$ Cl⁻, Br⁻, I⁻ CH₃COO⁻, NO_3^- PO₄³⁻, BO₃³⁻, SO₄²⁻ Cations: Ag⁺, Pb²⁺, Hg⁺, Hg²⁺, Hg²⁺, Pb²⁺, Bi³⁺, Cd²⁺, Cu²⁺, As^{3+/5+}, Sb^{3+/5+}, Sn^{2+/4+} Al³⁺, Cr³⁺, Fe³⁺ Zn²⁺, Ni²⁺, Co²⁺, Mn²⁺ Ca²⁺, Sr²⁺, Ba²⁺ Mg²⁺, NH₄⁺